Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Cell Genom ; 4(3): 100524, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38484702

RESUMO

Understanding how genetic variation impacts gene expression is a major goal of genomics; however, only a fraction of disease-associated loci have been demonstrated to impact gene expression when cells are in an unperturbed "steady state." In this issue of Cell Genomics, Lin et al.1 investigate how exposure to a particular cellular context (i.e., a high-cholesterol, high-fat diet) can enhance our ability to identify new regulatory variants through longitudinal sampling of three tissue types in the baboon.


Assuntos
Dieta Hiperlipídica , Locos de Características Quantitativas , Animais , Papio/genética , Locos de Características Quantitativas/genética , Genômica
2.
Proc Natl Acad Sci U S A ; 121(11): e2309469121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38442181

RESUMO

The early-life environment can profoundly shape the trajectory of an animal's life, even years or decades later. One mechanism proposed to contribute to these early-life effects is DNA methylation. However, the frequency and functional importance of DNA methylation in shaping early-life effects on adult outcomes is poorly understood, especially in natural populations. Here, we integrate prospectively collected data on fitness-associated variation in the early environment with DNA methylation estimates at 477,270 CpG sites in 256 wild baboons. We find highly heterogeneous relationships between the early-life environment and DNA methylation in adulthood: aspects of the environment linked to resource limitation (e.g., low-quality habitat, early-life drought) are associated with many more CpG sites than other types of environmental stressors (e.g., low maternal social status). Sites associated with early resource limitation are enriched in gene bodies and putative enhancers, suggesting they are functionally relevant. Indeed, by deploying a baboon-specific, massively parallel reporter assay, we show that a subset of windows containing these sites are capable of regulatory activity, and that, for 88% of early drought-associated sites in these regulatory windows, enhancer activity is DNA methylation-dependent. Together, our results support the idea that DNA methylation patterns contain a persistent signature of the early-life environment. However, they also indicate that not all environmental exposures leave an equivalent mark and suggest that socioenvironmental variation at the time of sampling is more likely to be functionally important. Thus, multiple mechanisms must converge to explain early-life effects on fitness-related traits.


Assuntos
Experiências Adversas da Infância , Metilação de DNA , Animais , Motivos de Nucleotídeos , Bioensaio , Papio/genética
3.
Elife ; 122024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38407202

RESUMO

Previously, we showed that a massively parallel reporter assay, mSTARR-seq, could be used to simultaneously test for both enhancer-like activity and DNA methylation-dependent enhancer activity for millions of loci in a single experiment (Lea et al., 2018). Here, we apply mSTARR-seq to query nearly the entire human genome, including almost all CpG sites profiled either on the commonly used Illumina Infinium MethylationEPIC array or via reduced representation bisulfite sequencing. We show that fragments containing these sites are enriched for regulatory capacity, and that methylation-dependent regulatory activity is in turn sensitive to the cellular environment. In particular, regulatory responses to interferon alpha (IFNA) stimulation are strongly attenuated by methyl marks, indicating widespread DNA methylation-environment interactions. In agreement, methylation-dependent responses to IFNA identified via mSTARR-seq predict methylation-dependent transcriptional responses to challenge with influenza virus in human macrophages. Our observations support the idea that pre-existing DNA methylation patterns can influence the response to subsequent environmental exposures-one of the tenets of biological embedding. However, we also find that, on average, sites previously associated with early life adversity are not more likely to functionally influence gene regulation than expected by chance.


Assuntos
Metilação de DNA , Interação Gene-Ambiente , Humanos , Genoma Humano , Bioensaio , Exposição Ambiental , Interferon-alfa
4.
Genome Biol ; 25(1): 21, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38225662

RESUMO

BACKGROUND: Current evidence suggests that cis-regulatory elements controlling gene expression may be the predominant target of natural selection in humans and other species. Detecting selection acting on these elements is critical to understanding evolution but remains challenging because we do not know which mutations will affect gene regulation. RESULTS: To address this, we devise an approach to search for lineage-specific selection on three critical steps in transcriptional regulation: chromatin activity, transcription factor binding, and chromosomal looping. Applying this approach to lymphoblastoid cells from 831 individuals of either European or African descent, we find strong signals of differential chromatin activity linked to gene expression differences between ancestries in numerous contexts, but no evidence of functional differences in chromosomal looping. Moreover, we show that enhancers rather than promoters display the strongest signs of selection associated with sites of differential transcription factor binding. CONCLUSIONS: Overall, our study indicates that some cis-regulatory adaptation may be more easily detected at the level of chromatin than DNA sequence. This work provides a vast resource of genomic interaction data from diverse human populations and establishes a novel selection test that will benefit future study of regulatory evolution in humans and other species.


Assuntos
Cromatina , Elementos Facilitadores Genéticos , Humanos , Cromatina/genética , Regulação da Expressão Gênica , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
bioRxiv ; 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37693423

RESUMO

Exposure to adversity during early life is linked to lasting detrimental effects on evolutionary fitness across many taxa. However, due to the challenges of collecting longitudinal data, especially in species where one sex disperses, direct evidence from long-lived species remains relatively scarce. Here we test the effects of early life adversity on male and female longevity in a free-ranging population of rhesus macaques (Macaca mulatta) at Cayo Santiago, Puerto Rico. We leveraged six decades of data to quantify the relative importance of ten forms of early life adversity for 6,599 macaques (3,230 male, 3,369 female), with a smaller sample size (N=299) for one form of adversity (maternal social isolation) which required high-resolution behavioral data. We found that individuals who experienced more early life adversity died earlier than those who experienced less adversity. Mortality risk was highest during early life, defined as birth to four years old, suggesting acute survival effects of adversity, but heightened mortality risk was also present in macaques who survived to adulthood. Females and males were affected differently by some forms of adversity, and these differences might be driven by varying energetic demands, female philopatry, and male dispersal. By leveraging data on thousands of macaques collected over decades, our results show that the fitness consequences of early life adversity are not uniform across individuals but vary as a function of the type of adversity, timing, and social context, and thus contribute to our limited but growing understanding of the evolution of early life sensitivities in long-lived species.

6.
PLoS Biol ; 21(9): e3002311, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37695771

RESUMO

Noncommunicable diseases (NCDs) are on the rise worldwide. Obesity, cardiovascular disease, and type 2 diabetes are among a long list of "lifestyle" diseases that were rare throughout human history but are now common. The evolutionary mismatch hypothesis posits that humans evolved in environments that radically differ from those we currently experience; consequently, traits that were once advantageous may now be "mismatched" and disease causing. At the genetic level, this hypothesis predicts that loci with a history of selection will exhibit "genotype by environment" (GxE) interactions, with different health effects in "ancestral" versus "modern" environments. To identify such loci, we advocate for combining genomic tools in partnership with subsistence-level groups experiencing rapid lifestyle change. In these populations, comparisons of individuals falling on opposite extremes of the "matched" to "mismatched" spectrum are uniquely possible. More broadly, the work we propose will inform our understanding of environmental and genetic risk factors for NCDs across diverse ancestries and cultures.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Humanos , Suscetibilidade a Doenças , Diabetes Mellitus Tipo 2/genética , Evolução Biológica , Genômica
7.
Mol Ecol Resour ; 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37602981

RESUMO

Monitoring genetic diversity in wild populations is a central goal of ecological and evolutionary genetics and is critical for conservation biology. However, genetic studies of nonmodel organisms generally lack access to species-specific genotyping methods (e.g. array-based genotyping) and must instead use sequencing-based approaches. Although costs are decreasing, high-coverage whole-genome sequencing (WGS), which produces the highest confidence genotypes, remains expensive. More economical reduced representation sequencing approaches fail to capture much of the genome, which can hinder downstream inference. Low-coverage WGS combined with imputation using a high-confidence reference panel is a cost-effective alternative, but the accuracy of genotyping using low-coverage WGS and imputation in nonmodel populations is still largely uncharacterized. Here, we empirically tested the accuracy of low-coverage sequencing (0.1-10×) and imputation in two natural populations, one with a large (n = 741) reference panel, rhesus macaques (Macaca mulatta), and one with a smaller (n = 68) reference panel, gelada monkeys (Theropithecus gelada). Using samples sequenced to coverage as low as 0.5×, we could impute genotypes at >95% of the sites in the reference panel with high accuracy (median r2 ≥ 0.92). We show that low-coverage imputed genotypes can reliably calculate genetic relatedness and population structure. Based on these data, we also provide best practices and recommendations for researchers who wish to deploy this approach in other populations, with all code available on GitHub (https://github.com/mwatowich/LoCSI-for-non-model-species). Our results endorse accurate and effective genotype imputation from low-coverage sequencing, enabling the cost-effective generation of population-scale genetic datasets necessary for tackling many pressing challenges of wildlife conservation.

8.
Sci Adv ; 9(32): eade9797, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37556539

RESUMO

In many populations, the apolipoprotein-ε4 (APOE-ε4) allele increases the risk for several chronic diseases of aging, including dementia and cardiovascular disease; despite these harmful effects at later ages, the APOE-ε4 allele remains prevalent. We assess the impact of APOE-ε4 on fertility and its proximate determinants (age at first reproduction, interbirth interval) among the Tsimane, a natural fertility population of forager-horticulturalists. Among 795 women aged 13 to 90 (20% APOE-ε4 carriers), those with at least one APOE-ε4 allele had 0.3 to 0.5 more children than (ε3/ε3) homozygotes, while those with two APOE-ε4 alleles gave birth to 1.4 to 2.1 more children. APOE-ε4 carriers achieve higher fertility by beginning reproduction 0.8 years earlier and having a 0.23-year shorter interbirth interval. Our findings add to a growing body of literature suggesting a need for studies of populations living in ancestrally relevant environments to assess how alleles that are deleterious in sedentary urban environments may have been maintained by selection throughout human evolutionary history.


Assuntos
Doença de Alzheimer , Criança , Humanos , Feminino , Doença de Alzheimer/genética , Apolipoproteínas E/genética , Envelhecimento , Apolipoproteínas , Fertilidade/genética , Alelos , Genótipo , Fatores de Risco
9.
PLoS Genet ; 19(7): e1010833, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37410774

RESUMO

Gene expression variance has been linked to organismal function and fitness but remains a commonly neglected aspect of molecular research. As a result, we lack a comprehensive understanding of the patterns of transcriptional variance across genes, and how this variance is linked to context-specific gene regulation and gene function. Here, we use 57 large publicly available RNA-seq data sets to investigate the landscape of gene expression variance. These studies cover a wide range of tissues and allowed us to assess if there are consistently more or less variable genes across tissues and data sets and what mechanisms drive these patterns. We show that gene expression variance is broadly similar across tissues and studies, indicating that the pattern of transcriptional variance is consistent. We use this similarity to create both global and within-tissue rankings of variation, which we use to show that function, sequence variation, and gene regulatory signatures contribute to gene expression variance. Low-variance genes are associated with fundamental cell processes and have lower levels of genetic polymorphisms, have higher gene-gene connectivity, and tend to be associated with chromatin states associated with transcription. In contrast, high-variance genes are enriched for genes involved in immune response, environmentally responsive genes, immediate early genes, and are associated with higher levels of polymorphisms. These results show that the pattern of transcriptional variance is not noise. Instead, it is a consistent gene trait that seems to be functionally constrained in human populations. Furthermore, this commonly neglected aspect of molecular phenotypic variation harbors important information to understand complex traits and disease.


Assuntos
Regulação da Expressão Gênica , Humanos , Regulação da Expressão Gênica/genética , RNA-Seq , Fenótipo , Expressão Gênica
10.
bioRxiv ; 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37293015

RESUMO

Previously we showed that a massively parallel reporter assay, mSTARR-seq, could be used to simultaneously test for both enhancer-like activity and DNA methylation-dependent enhancer activity for millions of loci in a single experiment (Lea et al., 2018). Here we apply mSTARR-seq to query nearly the entire human genome, including almost all CpG sites profiled either on the commonly used Illumina Infinium MethylationEPIC array or via reduced representation bisulfite sequencing. We show that fragments containing these sites are enriched for regulatory capacity, and that methylation-dependent regulatory activity is in turn sensitive to the cellular environment. In particular, regulatory responses to interferon alpha (IFNA) stimulation are strongly attenuated by methyl marks, indicating widespread DNA methylation-environment interactions. In agreement, methylation-dependent responses to IFNA identified via mSTARR-seq predict methylation-dependent transcriptional responses to challenge with influenza virus in human macrophages. Our observations support the idea that pre-existing DNA methylation patterns can influence the response to subsequent environmental exposures-one of the tenets of biological embedding. However, we also find that, on average, sites previously associated with early life adversity are not more likely to functionally influence gene regulation than expected by chance.

11.
Integr Comp Biol ; 63(3): 681-692, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37279895

RESUMO

Adverse experiences in early life are associated with aging-related disease risk and mortality across many species. In humans, confounding factors, as well as the difficulty of directly measuring experiences and outcomes from birth till death, make it challenging to identify how early life adversity impacts aging and health. These challenges can be mitigated, in part, through the study of non-human animals, which are exposed to parallel forms of adversity and can age similarly to humans. Furthermore, studying the links between early life adversity and aging in natural populations of non-human animals provides an excellent opportunity to better understand the social and ecological pressures that shaped the evolution of early life sensitivities. Here, we highlight ongoing and future research directions that we believe will most effectively contribute to our understanding of the evolution of early life sensitivities and their repercussions.


Assuntos
Envelhecimento , Estresse Fisiológico , Animais , Modelos Biológicos
12.
bioRxiv ; 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37333311

RESUMO

The early life environment can profoundly shape the trajectory of an animal's life, even years or decades later. One mechanism proposed to contribute to these early life effects is DNA methylation. However, the frequency and functional importance of DNA methylation in shaping early life effects on adult outcomes is poorly understood, especially in natural populations. Here, we integrate prospectively collected data on fitness-associated variation in the early environment with DNA methylation estimates at 477,270 CpG sites in 256 wild baboons. We find highly heterogeneous relationships between the early life environment and DNA methylation in adulthood: aspects of the environment linked to resource limitation (e.g., low-quality habitat, early life drought) are associated with many more CpG sites than other types of environmental stressors (e.g., low maternal social status). Sites associated with early resource limitation are enriched in gene bodies and putative enhancers, suggesting they are functionally relevant. Indeed, by deploying a baboon-specific, massively parallel reporter assay, we show that a subset of windows containing these sites are capable of regulatory activity, and that, for 88% of early drought-associated sites in these regulatory windows, enhancer activity is DNA methylation-dependent. Together, our results support the idea that DNA methylation patterns contain a persistent signature of the early life environment. However, they also indicate that not all environmental exposures leave an equivalent mark and suggest that socioenvironmental variation at the time of sampling is more likely to be functionally important. Thus, multiple mechanisms must converge to explain early life effects on fitness-related traits.

13.
Genome Biol ; 24(1): 26, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36788564

RESUMO

A long-standing goal of evolutionary biology is to decode how gene regulation contributes to organismal diversity. Doing so is challenging because it is hard to predict function from non-coding sequence and to perform molecular research with non-model taxa. Massively parallel reporter assays (MPRAs) enable the testing of thousands to millions of sequences for regulatory activity simultaneously. Here, we discuss the execution, advantages, and limitations of MPRAs, with a focus on evolutionary questions. We propose solutions for extending MPRAs to rare taxa and those with limited genomic resources, and we underscore MPRA's broad potential for driving genome-scale, functional studies across organisms.


Assuntos
Regulação da Expressão Gênica , Genômica , Análise de Sequência de DNA , Genes Reporter
14.
ArXiv ; 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36713247

RESUMO

Globally, we are witnessing the rise of complex, non-communicable diseases (NCDs) related to changes in our daily environments. Obesity, asthma, cardiovascular disease, and type 2 diabetes are part of a long list of "lifestyle" diseases that were rare throughout human history but are now common. A key idea from anthropology and evolutionary biology-the evolutionary mismatch hypothesis-seeks to explain this phenomenon. It posits that humans evolved in environments that radically differ from the ones experienced by most people today, and thus traits that were advantageous in past environments may now be "mismatched" and disease-causing. This hypothesis is, at its core, a genetic one: it predicts that loci with a history of selection will exhibit "genotype by environment" (GxE) interactions and have differential health effects in ancestral versus modern environments. Here, we discuss how this concept could be leveraged to uncover the genetic architecture of NCDs in a principled way. Specifically, we advocate for partnering with small-scale, subsistence-level groups that are currently transitioning from environments that are arguably more "matched" with their recent evolutionary history to those that are more "mismatched". These populations provide diverse genetic backgrounds as well as the needed levels and types of environmental variation necessary for mapping GxE interactions in an explicit mismatch framework. Such work would make important contributions to our understanding of environmental and genetic risk factors for NCDs across diverse ancestries and sociocultural contexts.

15.
Nat Genet ; 55(1): 123-129, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36550361

RESUMO

Evolutionary theory suggests that lifespan-reducing alleles should be purged from the gene pool, and yet decades of genome-wide association and model organism studies have shown that they persist. One potential explanation is that alleles that regulate lifespan do so only in certain environmental contexts. We exposed outbred Drosophila to control and high-sugar diets and genotyped more than 10,000 adult flies to track allele frequency changes over the course of a single adult lifespan. We identified thousands of lifespan-associated alleles associated with early versus late-life trade-offs, late-onset effects and genotype-by-environment interactions. Remarkably, a third of lifespan-associated genetic variation had environmentally dependent effects on lifespan. We find that lifespan-reducing alleles are often recently derived, have stronger effects on a high-sugar diet and show signatures of selection in wild Drosophila populations, consistent with the evolutionary mismatch hypothesis. Our results provide insight into the highly polygenic and context-dependent genetic architecture of lifespan variation and the evolutionary processes that shape this key trait.


Assuntos
Drosophila , Longevidade , Animais , Drosophila/genética , Longevidade/genética , Drosophila melanogaster/genética , Estudo de Associação Genômica Ampla , Dieta , Açúcares , Variação Genética
16.
Proc Natl Acad Sci U S A ; 120(1): e2207544120, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36574663

RESUMO

A growing body of work has addressed human adaptations to diverse environments using genomic data, but few studies have connected putatively selected alleles to phenotypes, much less among underrepresented populations such as Amerindians. Studies of natural selection and genotype-phenotype relationships in underrepresented populations hold potential to uncover previously undescribed loci underlying evolutionarily and biomedically relevant traits. Here, we worked with the Tsimane and the Moseten, two Amerindian populations inhabiting the Bolivian lowlands. We focused most intensively on the Tsimane, because long-term anthropological work with this group has shown that they have a high burden of both macro and microparasites, as well as minimal cardiometabolic disease or dementia. We therefore generated genome-wide genotype data for Tsimane individuals to study natural selection, and paired this with blood mRNA-seq as well as cardiometabolic and immune biomarker data generated from a larger sample that included both populations. In the Tsimane, we identified 21 regions that are candidates for selective sweeps, as well as 5 immune traits that show evidence for polygenic selection (e.g., C-reactive protein levels and the response to coronaviruses). Genes overlapping candidate regions were strongly enriched for known involvement in immune-related traits, such as abundance of lymphocytes and eosinophils. Importantly, we were also able to draw on extensive phenotype information for the Tsimane and Moseten and link five regions (containing PSD4, MUC21 and MUC22, TOX2, ANXA6, and ABCA1) with biomarkers of immune and metabolic function. Together, our work highlights the utility of pairing evolutionary analyses with anthropological and biomedical data to gain insight into the genetic basis of health-related traits.


Assuntos
Genética Populacional , Nível de Saúde , Humanos , Biomarcadores , Bolívia , Genômica , Genótipo , Fenótipo , Polimorfismo de Nucleotídeo Único , Seleção Genética , Genoma Humano
17.
Genome Res ; 32(10): 1826-1839, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36229124

RESUMO

There is increasing appreciation that, in addition to being shaped by an individual's genotype and environment, most complex traits are also determined by poorly understood interactions between these two factors. So-called "genotype × environment" (G×E) interactions remain difficult to map at the organismal level but can be uncovered using molecular phenotypes. To do so at large scale, we used TM3'seq to profile transcriptomes across 12 cellular environments in 544 immortalized B cell lines from the 1000 Genomes Project. We mapped the genetic basis of gene expression levels across environments and revealed a context-dependent genetic architecture: The average heritability of gene expression levels increased in treatment relative to control conditions, and on average, each treatment revealed new expression quantitative trait loci (eQTLs) at 11% of genes. Across our experiments, 22% of all identified eQTLs were context-dependent, and this group was enriched for trait- and disease-associated loci. Further, evolutionary analyses suggested that positive selection has shaped G×E loci involved in responding to immune challenges and hormones but not to man-made chemicals. We hypothesize that this reflects a reduced opportunity for selection to act on responses to molecules recently introduced into human environments. Together, our work highlights the importance of considering an exposure's evolutionary history when studying and interpreting G×E interactions, and provides new insight into the evolutionary mechanisms that maintain G×E loci in human populations.


Assuntos
Locos de Características Quantitativas , Transcriptoma , Humanos , Fenótipo , Genótipo
18.
BMJ Open ; 12(9): e058660, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36127083

RESUMO

INTRODUCTION: Non-communicable disease (NCD) risk is influenced by environmental factors that are highly variable worldwide, yet prior research has focused mainly on high-income countries where most people are exposed to relatively homogeneous and static environments. Understanding the scope and complexity of environmental influences on NCD risk around the globe requires more data from people living in diverse and changing environments. Our project will investigate the prevalence and environmental causes of NCDs among the indigenous peoples of Peninsular Malaysia, known collectively as the Orang Asli, who are currently undergoing varying degrees of lifestyle and sociocultural changes that are predicted to increase vulnerability to NCDs, particularly metabolic disorders and musculoskeletal degenerative diseases. METHODS AND ANALYSIS: Biospecimen sampling and screening for a suite of NCDs (eg, cardiovascular disease, type II diabetes, osteoarthritis and osteoporosis), combined with detailed ethnographic work to assess key lifestyle and sociocultural variables (eg, diet, physical activity and wealth), will take place in Orang Asli communities spanning a gradient from remote, traditional villages to acculturated, market-integrated urban areas. Analyses will first test for relationships between environmental variables, NCD risk factors and NCD occurrence to investigate how environmental changes are affecting NCD susceptibility among the Orang Asli. Second, we will examine potential molecular and physiological mechanisms (eg, epigenetics and systemic inflammation) that mediate environmental effects on health. Third, we will identify intrinsic (eg, age and sex) and extrinsic (eg, early-life experiences) factors that predispose certain people to NCDs in the face of environmental change to better understand which Orang Asli are at greatest risk of NCDs. ETHICS AND DISSEMINATION: Approval was obtained from multiple ethical review boards including the Malaysian Ministry of Health. This study follows established principles for ethical biomedical research among vulnerable indigenous communities, including fostering collaboration, building cultural competency, enhancing transparency, supporting capacity building and disseminating research findings.


Assuntos
Diabetes Mellitus Tipo 2 , Doenças não Transmissíveis , Estudos de Coortes , Estudos Transversais , Humanos , Malásia/epidemiologia , Doenças não Transmissíveis/epidemiologia , Fatores de Risco
19.
Philos Trans R Soc Lond B Biol Sci ; 377(1845): 20200441, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35000452

RESUMO

The social environment is a major determinant of morbidity, mortality and Darwinian fitness in social animals. Recent studies have begun to uncover the molecular processes associated with these relationships, but the degree to which they vary across different dimensions of the social environment remains unclear. Here, we draw on a long-term field study of wild baboons to compare the signatures of affiliative and competitive aspects of the social environment in white blood cell gene regulation, under both immune-stimulated and non-stimulated conditions. We find that the effects of dominance rank on gene expression are directionally opposite in males versus females, such that high-ranking males resemble low-ranking females, and vice versa. Among females, rank and social bond strength are both reflected in the activity of cellular metabolism and proliferation genes. However, while we observe pronounced rank-related differences in baseline immune gene activity, only bond strength predicts the fold-change response to immune (lipopolysaccharide) stimulation. Together, our results indicate that the directionality and magnitude of social effects on gene regulation depend on the aspect of the social environment under study. This heterogeneity may help explain why social environmental effects on health and longevity can also vary between measures. This article is part of the theme issue 'The centennial of the pecking order: current state and future prospects for the study of dominance hierarchies'.


Assuntos
Longevidade , Predomínio Social , Animais , Feminino , Masculino , Papio/fisiologia , Meio Social
20.
Elife ; 102021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34338633

RESUMO

Dietary changes associated with industrialization increase the prevalence of chronic diseases, such as obesity, type II diabetes, and cardiovascular disease. This relationship is often attributed to an 'evolutionary mismatch' between human physiology and modern nutritional environments. Western diets enriched with foods that were scarce throughout human evolutionary history (e.g. simple sugars and saturated fats) promote inflammation and disease relative to diets more akin to ancestral human hunter-gatherer diets, such as a Mediterranean diet. Peripheral blood monocytes, precursors to macrophages and important mediators of innate immunity and inflammation, are sensitive to the environment and may represent a critical intermediate in the pathway linking diet to disease. We evaluated the effects of 15 months of whole diet manipulations mimicking Western or Mediterranean diet patterns on monocyte polarization in a well-established model of human health, the cynomolgus macaque (Macaca fascicularis). Monocyte transcriptional profiles differed markedly between diets, with 40% of transcripts showing differential expression (FDR < 0.05). Monocytes from Western diet consumers were polarized toward a more proinflammatory phenotype. The Western diet shifted the co-expression of 445 gene pairs, including small RNAs and transcription factors associated with metabolism and adiposity in humans, and dramatically altered behavior. For example, Western-fed individuals were more anxious and less socially integrated. These behavioral changes were also associated with some of the effects of diet on gene expression, suggesting an interaction between diet, central nervous system activity, and monocyte gene expression. This study provides new molecular insights into an evolutionary mismatch and uncovers new pathways through which Western diets alter monocyte polarization toward a proinflammatory phenotype.


Assuntos
Dieta Mediterrânea , Dieta Ocidental , Inflamação/dietoterapia , Monócitos/metabolismo , Comportamento Social , Animais , Modelos Animais de Doenças , Feminino , Expressão Gênica , Inflamação/metabolismo , Inflamação/patologia , Macaca fascicularis , Monócitos/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...